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ANALYSIS OF X-15 LANDING APPROACH AND FLARE

CHARACTERISTICS DETERMINED FROM

THE FIRST 30 FLIGHTS

By Gene J. Matranga

SUMMARY

The approach and flare maneuvers for the first 30 flights of the

X-15 airplane and the various control problems encountered are discussed.

The results afford a relatively good cross section of landing conditions

that might be experienced with future glide vehicles having low lift-

drag ratios.

Flight-derived drag data show that preflight predictions based on

wind-tunnel tests were_ in general_ somewhat higher than the values

measured in flight. Depending on configuration_ the peak lift-drag

ratios from flight varied from 3-5 to 4.5 as compared with a predicted

range of from 3.0 to 4.2.

By employing overhead_ spiral-type patterns beginning at altitudes

as high as 40_000 feet_ the pilots were consistently able to touch down

within about ±i_000 feet of a designated point.

A typical flare was initiated at a "comfortable" altitude of about

$00 feet and an indicated airspeed of approximately 300 knots_ which

allowed a margin of excess speed. The flap and gear were extended

when the flare was essentially comp!eted_ and an average touchdown was

accomplished at a speed of about 159 knots indicated airspeed_ an angle

of attack of about 7°_ and a rate of descent of about 4 feet per second.

In general_ the approach and landing characteristics were predicted

with good accuracy in extensive preflight simulations. F-104 airplanes

which simulated the X-I_ landing characteristics were particularly

valuable for pilot training.



INTRODUCTION

Prior to the first flight of the X-15, _t was apparent from wind-
tunnel tests that the landing approach and flare maneuverswould be
performed in a range of lift-drag ratios low_r than previously flown
with rocket-propelled aircraft (ref. i). Sirce piloting problems were
anticipated, analytical and flight-test studies were undertaken by the
NASAFlight Research Center, the manufacturer (North American Aviation,
Inc.), and the Air Force Flight Test Center Io determine howwell the
pilot could execute approach and flare maneuversat reduced lift-drag
ratios. References i to 3 are illustrative (f these investigations.

This paper expandsupon the limited analyses of early X-15 landings
presented in references I, 4, and 5. The la_ding approach and flare
data acquired during the first 30 X-15 flights are considered in detail
and are comparedwith the preflight predictions. Included are data for
the initial landings of each of the seven X-15 pilots. These results_
it is believed_ are generally indicative of flight characteristics and
piloting problems which might be encountered in executing a normal
flared landing with future low-lift-drag-rat_o gliders.

A detailed analysis of the X-!5 landing-gear behavior during
touchdown and runout is presented in reference 6.
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SYMBOLS

a n

CD

CL

g

h

L/D

M

P

q

normal acceleration_ g units

airplane drag coefficient

airplane lift coefficient

acceleration due to gravity, ft/sec 2

geometric altitude (referenced to touchdown point), ft

lift-drag ratio_ CL/C D

Mach number

rolling velocity, deg/sec

pitching velocity_ deg/sec

t time before touchdown, sec



At

Vi

Vv

W

X

Zxx

Y

ga

8f

gh

incremental time before touchdown_ sec

indicated airspeed_ knots

vertical velocity_ ft/sec

landing weight 3 ib

longitudinal distance from touchdown_ ft

touchdown dispersion from intended touchdown point_ ft

lateral distance from touchdown_ ft

angle of attack_ deg

angle of sideslip_ deg

aileron deflection (left horizontal-tail deflection minus right

horizontal-tail deflection)_ deg

flap deflection_ deg

horizontal-tail deflection_

Left horizontal-tail deflection + Right horizontal-tail deflection
2

deg

Subscripts:

The following subscripts apply to conditions during the particular

portion of the landing approach and flare maneuver indicated.

f

ge

TD

9o

18o

fe

max

flare initiation

gear extension

touchdown

pattern base leg

pattern downwind leg

flap extension

maximum condition during flare



AIRPLANE

The X-15 is a single-place research airplane designed to perform
at speeds up to 6_600 ft/sec and altitudes _p to 250_000feet. The
peak performance is attained during short-d_ration_ rocket-powered
flight following which the airplane perform_ an unpoweredglide to the
landing. A three-view drawing of the airplane is shownin figure i.
Figure 2(a) is a photograph of the airplane in the normal ground
attitude_ and figure 2(b) showsthe airplan_ in flight just prior to
main-gear touchdown. Table I contains pertinent X-15 physical
characteristics.

The airplane has a 5-percent-thick win_ with an aspect ratio of 2.5.
Plain flaps are located at the trailing edg_ of the wing.

All aerodynamic control surfaces are actuated by irreversible
hydraulic systems. Movable horizontal-tail surfaces are deflected
essentially symmetrically for longitudinal control and differentially
for lateral control by meansof either a cor_ventional center stick or
a side-located controller. The controllers are linked mechanically and
hydraulically to provide simultaneous movementof both control sticks;
however_ to obtain a given stabilizer motio_ only about one-third as
muchmovementof the side stick is required as of the center stick.
The movable portions of the upper and lower wedge-sectioned vertical
tails_ actuated by conventional rudder pedals_ provide directional
control. Just prior to flare initiation, t_e lower movable portion of
the vertical tail (also referred to as the _Lovablerudder) is jettisoned
to allow sufficient ground clearance for lalding. Speedbrakes are
located on the rear fixed portion of the up],er and lower vertical tails.

Augmentedaerodynamic damping of the a_rplane is provided about
all three axes in a conventional manner. An additional interconnect
damper_termed "yar"_ furnishes a crossfeed of the yaw-rate signal into
the roll damper. The characteristics of th_ stability augmentation
system are given in table II.

A nominal flap deflection of 40° was u_ed for the first five flights
of the number i X-15 airplane and the first three flights of the number2
airplane. However_in order that a reduced drag could be obtained without
appreciably affecting the lift_ the nominal deflection was reduced to 30°
for all subsequent flights. The actual fla], deflection recorded during
each flight and the flap-actuation time are included in the tabulation
of flight-measured characteristics in table III.

The landing gear consists of a comparalively conventional dual-
wheel nose gear located far forward of the airplane center of gravity
and steel skids located to the rear under tle horizontal tail (fig. i).



Extensive detail of this gear system and its operation is presented in
reference 6. Table III lists the gear-actuation time for each flight.

INSTRUMENTATION

The following quantities pertinent to this investigation were
recorded on NASAinternal-recording instruments_ synchronized by a
commontimer:

Airspeed and altitude
Normal and longitudinal acceleration
Angle of attack and angle of sideslip
Rolling_ yawing_ and pitching velocity
Aileron_ vertical-tail_ horizontal-tail; and flap deflection

The airspeed and pressure altitude were measuredwith a conven-
tional NASApitot-static tube mounted on a nose boom. A description
of the nose boomand its accuracies is given in reference 7. Also on
the nose boomwere free-floating vanes used to measure angles of attack
and sideslip. The angles presented in this paper were not corrected for
transient position errors_ since these errors were considered negligible.
The angular velocities were measuredabout the airplane body axes.

Geometric altitude and ground coordinates fcr the approach-pattern
analysis were obtained from multistation solutions of position data
furnished by Air Force Flight Test Center Askania cinetheodolite cameras.
These cameras; operating at 4 frames per second; tracked the airplane
throughout the pattern; flare; touchdown; and ground runout. Akeley
phototheodolite cameras_ running at 19 frames per second; tracked the
airplane through the final phases of the flare_ the touchdown; and
ground runout. A combination of the Askania and Akeley camera data
provided altitude and rate-of-descent information during the flare and
touchdown.

During someof the more recent landings reported in this paper,
an analysis of the skid imprint on the lakebed (see ref. 6) and measure-
ments using the skid itself as a trailing arm (somewhat similar in
principal to the method of ref. 8) afforded additional cross checks for
determining the value of rate of sink at touchdown. The values obtained
from these independent sources generally agreed to within i ft/sec.



TESTCONDITIONS

Table III presents a listing of the pilo_ landing weight_ damper
setting_ and control stick used during the fll_re_ together with
conditions existing on the downwindand base i_egsof the pattern_ at
flare initiation, during flap and gear extens2on_ and at touchdown for
each flight. This tabulation forms the nucleonsof this paper and will
be referred to frequently in the subsequent sections. In the flight
designation used in the first column of the t_le_ the first digit
indicates the airplane by number (i or 2), th._ second indicates the
free-flight numberof the particular airplane, and the third indicates
the total airborne X-15/B-52 flights for that airplane.

At least one landing has been performed _y each of the seven X-15
pilots (A to G in the tabulation). Three were NASApilots_ two were
Air Force pilots_ one was a U.S. Navy pilot_ and one was a North
American Aviation pilot.

Weights at touchdownhave ranged from a _.owof 13_234 pounds which
was experienced on the initial glide flight (_.-i-5), as discussed in
reference 4_ to a high of 15_153pounds recorced on flight 2-3-9. The
average touchdownweight was about 14,600 pou_Lds_which corresponds
to a wing loading of 73 ib/sq ft.

The numbers in the column labeled damper setting indicate the
settings for the pitch_ roll (plus yar)_ and _w dampers_respectively,
for each flight. The relationship between da_er setting and gain is
presented in table II. Dampergains have varied from all dampers off
for flight 2-8-16 to all damperson at the se_ging of 4-4-8 used for
most of the flights. The landing of flight 2-$-16 was madeintentionally
with all dampersoff. In flights i-i-5_ 2-2-_, 2-3-9, i-2-7_ 1-3-8,
and 1-6-11, the zero gain for one damping mod__was caused by a
malfunction in that particular mode.

The side stick was utilized to perform t_e flare on only the
initial flight (i-i-_) and two subsequent flights (2-9-18 and 2-10-21).
On all other flights the conventional center _tick was used.

Pattern geometry varied from S-shaped pa_terns to full 360° overhead

patterns_ depending on space-positioning requirements at the high key

or initial point.

All landings reported herein were made or designated runways on

the hard surface of Rogers Dry Lake at Edwards Air Force Base_ Calif._

except for flight 2-3- 9. This flight terminated in an emergency

landing on nearby Rosamond Dry Lake following an in-flight explosion

in the engine compartment. Figure 3 is an aezial photo map of
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Rogers Dry Lake, showing the marked lakebed runways. The initial

landing and i0 subsequent landings were performed on the longest Rogers

Dry Lake runway, designated as i in figure 3. Seventeen landings were

performed on the runway designated as 2. Also, because of appreciable

cross winds on runway i, the pilot for flight 1-5-10 elected to land on

the runway labeled 3.

For the first five flights of the number i airplane and the first

three flights of the number 2 airplane, the nominal flap deflection for

touchdown was 40 ° . Subsequent flights were performed with a nominal

30°-flap deflection at touchdown.

RESULTS AND DISCUSSION

To provide general information on the ranges of lift, drag, and

angle of attack covered in this study, the following section presents,

first, performance data for the X-15 in various landing configurations.

This is followed by a discussion of the approach patterns flown and the

flare maneuvers performed prior to landing. These maneuvers are

graphically illustrated by typical time histories and summary plots.

Finally, an assessment is made of the extensive in-flight simulations

employed in the flight program, with particular attention to the value

of such simulations and their applicability to future low-lift-drag-

ratio gliders.

Performance

Figure _ presents angle of attack, lift-drag ratio, and drag

coefficient as a function of lift coefficient for the X-15 in various

approach configurations. All data were measured during approach and

flare maneuvers and are thus representative of the lift and angle-of-

attack range covered during this portion of the landing. Because of

the transient nature of the flare and the relatively short intervals

during which the airplane remained in some fixed configurations

(notably, those with the flaps extended only) data in several

configurations are limited. Also shown in this figure are the

manufacturer's estimates of these variables based on wind-tunnel data.

Clean airplane.- Figure 4(a) presents the performance data for the

clean airplane at approach speeds (M _ 0.5 to 0.7). The flight-measured

peak lift-drag ratio is about 4.25, occurring at a lift coefficient of

about 0.45 and an angle of attack of approximately 8° . With few

exceptions, the pilots have flown on the "front side" (low CL) of the

L/D curve throughout the approach pattern. The low-lift condition is

maintained by increasing bank angle as normal acceleration is increased
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at constant speed or by increasing bank angle or decreasing normal

acceleration, or both 3 as speed is reduced. This trend is normal, since

pilots usually like to allow some margin for reducing glide angle by

increasing lift. The estimates of the lift curve agree well with the

flight data 3 although a slight discrepancy bet_reen the flight and

predicted drag due to lift is evident. Fortun_tely, the predicted

lift-drag ratios were somewhat lower than thos._ measured in flight;

therefore, the actual landing problem was some_rhat less than anticipated.

Similar trends were evident in the data of ref,_rence 9 at higher subsonic
Mach numbers.

Ventral off.- Prior to flare initiation, at an altitude of several

thousand feet, the lower X-15 rudder is jettisc_ned. Data for this

configuration are presented in figure 4(b). J,_ttisoning the ventral

increases the peak lift-drag ratio to about 4.5 and slightly decreases

the lift coefficient for the peak lift-drag ra_io. Again there are few

data points on the 'back side" of the L/D cu:'ve and, as before, minor

differences exist between the flight and predicated data.

Flaps extended.- As noted previously, only eight landings were

performed with a nominal flap deflection of 40 ° (lower rudder off)_

and, since this configuration existed only bri_fly in these flights_

data in this configuration are limited_ as sho_ in figure 4(c).

Although the data seem to agree reasonably wel; with predictions_ they

are insufficient to define any trends.

Data obtained with the ventral off and a i_O°-flap deflection are

presented in figure 4(d). All data are on the front side of the L/D

curve_ with no definite peak discernible. In -_his instance_ both the

predicted drag due to lift and the lift-curve _lopes differ from

values obtained in flight.

Landing configuration.- Representative da_a in the landing

configuration (ventral off_ flap and gear exte_Lded) with a flap

deflection of 40 ° are presented in figure 4(e) The peak lift-drag

ratio of 3.3 occurs at a lift coefficient of _out 0.55 and an angle of

attack of about 7° . In this instance_ the fill-drag-ratio data are

distributed on both sides of the peak and are zLoticeably higher than

predicted_ especially at low lift. It should _e noted that the flight

data in this figure do not concur with those p2"eviously reported in
reference 4. The latter data were obtained u_er transient conditions

with comparatively insensitive accelerometers and_ therefore, are

considered to be less accurate than the data oJ' figure 4(e).

Figure 4(f) presents data for the landing configuration with lower

rudder off_ flaps deflected 30°_ and gear extezded. The peak lift-drag

ratio is about 3.5 and occurs at a lift coefficient of about 0.6 and an

angle of attack of about 7° . Most of the data are on the front side of
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the L/D curve; however, some data do exist on the back side. The

flight-measured values for lift-curve slope and lift-drag ratio are

again higher than predicted.

Summary.- Faired values of the flight-measured lift-drag ratios

are plotted against lift coefficient in figure 5 for the various X-15

configurations. For the configurations where the flaps are extended,
only curves for 30°-flap deflection are shown inasmuch as this condition

is most indicative of that which is currently being utilized on the

airplane. The peak lift-drag ratio of 4.25 in the clean configuration

can be raised to 4. 5 by jettisoning the ventral, thereby offering a

potential means of increasing range capability. Deflecting the flaps

30 ° causes no appreciable change in the peak lift-drag ratio. As

expected, however, there is a reduction in the trim angle of attack

through the period of flap extension. In the landing configuration

(ventral off, _f = 30 °, gear extended), the peak lift-drag ratio is 3.5.

The data on the back side of the L/D curves result primarily from

landings performed at a speed lower than that for peak lift-drag ratio,

rather than from large normal accelerations during the flare. Before

touchdown is accomplished, speed can be inadvertently reduced below

that for peak lift-drag ratio (CL _ 0.6), since the speed decay with

the flaps and gear extended is of the order of 6 KIAS per second.

Pattern

Several representative X-15 approach patterns are shown in figure 6

for approach speeds averaging about 300 knots indicated airspeed. Am

S-pattern and 270 ° and 360 ° overhead patterns are illustrated. For the

360 ° overhead pattern, the high key point is greater than 20,000 feet

above the touchdown point. (In this paper, high key is defined to be

the point where the pilot terminates his glide to the landing site and

initiates his spiral turn to the touchdown point.) For the patterns

shown, the average altitude is about 12,000 feet on the downwind leg

and about 6,000 feet on the base leg. The average radius of turn in these

patterns is of the order of I0,000 feet.

As mentioned in reference 4, digitally computed preflight predictions

of pattern geometry were good. Figure 7 shows a comparison of flight and

predicted patterns. The flight pattern is somewhat tighter than the

predicted path, even though the flight-determined lift-drag ratio was

higher than predicted (as seen in fig. 4). This reflects the slightly

higher speed and bank angle preferred by the pilot in flight as compared
with predictions.

Pattern selection.- By referring to table III, the type of pattern

flown and the speed, altitude, and space-position coordinates on the

downwind leg and base leg of the patterns can be compared from flight to



i0

flight. From this tabulation it can be seen _hat there is no predomi-
nance of any particular type of pattern, except that all patterns
utilized at least 180° of turning flight. The pattern selected depended
primarily on space-positioning considerations at the high key point.
The S-pattern and the 180° pattern were utili_ed most frequently on
initial flights because they were the most co_ivenient for the type of
ground tracks traversed on these flights (see refs. 4 and 5).

Downwind leg.- Conditions at the maximum lateral distance from the

touchdown point were chosen as representative for the downwind leg of

each flight in table III. On 180 ° patterns where there was no point of

inflection, the point directly opposite the touchdown point (x180 = O)
was selected as the downwind coordinate.

Speeds on the downwind leg varied from a_ low as 247 KIAS to as

high as 332 KIAS. The lowest altitude was 7,_82 feet, whereas the

highest was 2_293 feet. Lateral separations from the touchdown on the

downwind leg ranged from 13,557 feet to 34,24_ feet.

Base leg.- For the base leg of the pattern_ conditions at the

maximum longitudinal distance from the touchdi_wn point were chosen as

representative.

Speeds on the base leg of the pattern_ a_ shown in table III,

ranged between 246 KIAS and 338 KIAS. Altitu_[es varied between

3,479 feet and 12j394 feet 3 and longitudinal _[istance from the touchdown

varied between 13,878 feet and 34,386 feet.

Summary.- Figure 8 shows the spread of tile patterns flown during

the first 30 landings of the X-15. The range_ of the pattern space-

position data are indicated as shaded areas. The pattern of

flight 1-13-25 is considered an exception to ;he data presented herein

and, thus, is shown individually. On this flLght an engine failure at

the most distant point in the flight trajectory was encountered and the

pilot, concerned about returning to the base _uccessfullyj performed

the pattern shown. This landing emphasizes tile wide range of landing

flexibility of even this low-lift-drag-ratio rehicle and the adapta-

bility of the pilot.

In general, the pilots encountered no serious problems in

performing the approach maneuver. The airpla_le had satisfactory control

effectiveness at approach speeds, and the vis_ility in the landing

maneuver was adequate for a research-type airplane. All pilots

performed circling patterns which were genera_ly flown with some excess

in speed (V i _ 300 KIAS) to compensate for un._ertain wind conditions

and possible misjudgment of distances. The excess energy was then

expended through use of speed brakes and maneuvering flight prior to

entry into the final approach. The resulting convergence of the
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patterns is readily evident in figure 8 which, in turn, emphasizes the

great amount of flexibility that is available in a circling pattern

(ref. i).

Rates of descent in the pattern have been as high as 400 ft/sec at

high speeds with the speed brakes extended. However, the average rate

of sink is nearer 275 ft/sec. This value is considerably greater than

the limiting rate of sink recommended in reference i0. Because of the

consistent use of high sink rates in the X-15 landing patterns as well

as in other tests (refs. i to 3, ii, and 12), the specification of a

limiting rate of descent applicable to all vehicles is not believed to

be realistic. The choice of a limiting rate, instead; should be based

on a number of factors, such as normal approach and flare speeds, glide

angles, vehicle lift capability, available time before touchdown, and

the repeatability of the landing from a piloting standpoint.

Flare

Since most problems involved in landing the X-15 occurred during

the first few landing flares, each of the first four flights is

discussed in detail. Subsequent sections cover the effects of

technique, dampers, side-stick controller; and flap extension on the

flare and the relationship of these variables to problems encountered

in the initial flights. Finally, a summary of flare parameters is

presented and discussed. First, however, the results of a preflight

study of configuration effects are considered.

Preflight configuration study.- Well in advance of the first X-15

flight, both flight and analog simulation studies were conducted to

define the optimum flare technique to use. From this study it was

determined that flap and gear extension should be delayed until the

flare was essentially completed. The comparison of two analog time

histories in figure 9 shows the advantage of this procedure. In one

maneuver, the flaps and gear are extended at the beginning; in the other;

the flaps and gear are extended near the end of the flare. The flare-

initiation speed was 300 KIAS for both maneuvers. In the first maneuver 3

however, the flare was initiated at an altitude of about 23000 feet and

a rate of sink of slightly less than 290 ft/sec; for the second maneuver,

the altitude was only 800 feet and the rate of sink about one-half that

of the preceding maneuver. The flaps and gear were then extended at

350 feet. It is obvious, as discussed in reference 2, that the latter

technique would afford the pilot the time and margin for error in

determining the flare-initiation point that is consistent with normal

pilot capability and judgment.

First flight (1-1-5).- Details of this glide flight were reported

in reference 4. Since it was an intentional unpowered flight and no
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propellants were carried, the landing weight o:_133234 pounds is the
lowest recorded to date. Prior to pattern ent_'y3 the pilot performed
a stall approach in the clean configuration ancLextended the flaps for
an evaluation. The flaps were then retracted 3 and the landing pattern
was entered. During these maneuvers, the lack of a pitch damper
(which had failed before launch) posed no probilems. Because of time
limitations 3 the pilot was able to perform onllr these limited maneuvers
in evaluating the handling qualities that might be expected in the
approach and flare. Throughout the entire flii_ht 3 the pilot controlled
the airplane with the side-located controller.

Figure i0 is a time history of the events which occurred on this
flight during the flare. At an altitude of 13591 feet and an airspeed
of 270 KIAS the pilot initiated the flare. About 8 seconds later the
flaps started down. Near the end of the flap cycle 3 severe longitudinal
oscillations developed, with peak-to-peak oscillations in angle of
attack reaching values as high as ±5° . In attempting to subdue this

motion 3 the pilot repeatedly attained the limi_ angular rate of the

horizontal stabilizer (15 deg/sec), as indicated by the saw-tooth motion

in figure i0. Touchdown was finally accomplished at an airspeed of

153 KIAS with a rate of descent of 2 ft/sec anl 3 fortunately 3 because

of restrictions on angle of attack, at the bottom of an oscillation

where the angle of attack was only 8.5 ° .

Immediate analysis of the flight records _ref. 4) considered a

number of possible contributing factors. These included the lack of

automatic pitch damping, the existence of a noalinear airplane

pitching moment with near-neutral stability at low angle of attack 3

and an oversensitivity of the side-located control stick. Pilot

impressions of this landing (see ref. 133 for _xample) indicate that 3

at the time 3 he believed the airplane to be st_tically unstable in the

longitudinal mode. Subsequent six-degree-of-freedom analog simulations

showed that the oscillations could only have been pilot-induced.

As a result of all these factors 3 it was lecided by the

manufacturer that (i) the less-sensitive center stick would be used in

subsequent landings, (2) the control-surface r_te would be increased

from 15 deg/sec to 25 deg/sec, (3) the longit_inal-force gradient

would be increased approximately 30 percent3 (4) the longitudinal

breakout force would be increased slightly 3 a_d 3 as an additional

precaution, (5) launches would be performed orly if the pitch damper

were operating. These modifications were incorporated into the

number 2 airplane. It was considered essential that these restrictions

remain in effect until additional tests could be performed to justify

relaxing the restrictions or further altering the control system.

However 3 from additional tests 3 the NASA and the USAF determined that

the higher force gradient and higher breakout force were not partic-

ularly desirable from a piloting standpoint. These changes were 3
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thereforej not incorporated into the number i airplane which was to be

flown in the initial joint NASA_ USAF 3 and Navy program. The surface

rate was increased_ though_ and the restriction was observed of

launching only if the pitch damper was operating.

Second flight (2-1-3).- An account of this first powered X-15

flight is given in reference 5. The flare time history for this

flight (fig. ii) shows that the flare was initiated at an altitude

slightly greater than _00 feet and at an airspeed of 242 KiAS. Shortly

thereafter 3 the flap cycle was started. Although at first_ as can be

seen in the figure_ the flap motion proceeded at a normal rate_ the

rate of extension after only 2 seconds of operation decreased abruptly.

Consequently_ at touchdown only about 60 percent of the total flap

travel had been reached. With the pitch damper operating normally and

the center stick being used for control_ the only transient noticeable

to the pilot occurred with gear extension. Thisj however_ was quickly

damped. Touchdown was accomplished at an airspeed of 184 KIAS_ a rate
of sink of 4 ft/sec_ and an angle of attack of 8.1 ° .

Although the flap failed to operate properly and the pilot

prolonged the flare to the point of touchdown (indicated on the

vertical-velocity trace of fig. ii)_ this landing was comparatively

successful. Some of the concern generated by the first landing was_
therefore_ dispelled.

Third flight (2-2-6).- On this flight the roll damper failed at

launch. However_ as anticipated from preflight simulator tests_ this

created no serious control problem. Figure 12 presents a time history

of the flare. With the pitch damper operating and the pilot using the

center stick_ the flare was executed from an altitude of 700 feet at an

airspeed of 244 KIAS. The flap extended properly and did not introduce

any serious transients. Because of the lack of an energy margin_ the

pilot was again forced to extend the flare to the point of touchdown_

which resulted in a relatively large rate of descent (8 ft/sec) at

contact. The airspeed at touchdown was 180 KIAS_ and the angle of
attack was 7.6 ° .

Fourth flight (2-3-9).- Shortly after launch on this flight_ an

in-flight explosion occurred in the engine compartment_ which

necessitated an emergency landing on an alternate landing site

(Rosamond Dry Lake). Again, the roll damper failed at launch.

Figure 13 shows that the flare was initiated at an altitude of

about 9_0 feet with a speed of 253 KIAS. The flare continued to brake

the vertical velocity to a point approximately 4 seconds prior to

touchdown. At this point_ the altitude was slightly greater than

30 feet_ the airspeed was 184 KIAS, and the rate of descent was 4 ft/sec.

After continuing to decelerate during the last 4 seconds_ the airplane
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made contact at an airspeed of 161 KIAS_ a vertical velocity of

9.5 ft/sec_ and an angle of attack of i0.8 ° . The landing was hard and

resulted in major structural damage to the air,plane.

In this instance the lack of speed margi:_ at touchdown_ which had

been experienced in the previous two landings, allowed the pilot no

cushion "to feel" for the ground on an unfamiliar and unmarked landing

site. Another contributing factor to the severeness of the landing and

the damage sustained was the touchdown weight of I_183 pounds. A

limiting rate of sink of 9 ft/sec had been established, based upon a

design weight of ii_500 pounds. Howeverj as _he airplane fabrication

progressed and necessary modifications were i:_corporated into the design_

the basic airplane weight had increased to ne_rly 14_000 pounds. In

addition_ the usual quantity of propellant a_i oxidizer fluids could

not be jettisoned because of the steep descending attitude necessary to

reach the landing site. All of these factors contributed to the abnor-

mally high landing weight which even further _ompromised the allowable

rate of descent at touchdown (see ref. 6).

Effect of technique.- As was shown in th_ discussion of the first

four flights_ most of the early X-15 landing _lares were performed with

initial airspeeds of about 250 KIAS. At this speed 3 the pilot found it

necessary to prolong the flare until touchdown in order to land with a

proper rate of descent and yet not exceed the angle-of-attack limits.

Previous experience in simulating X-15 landi_!_s (refs. i and 2)

demonstrated that starting the flare with excess speed gave the pilot

a margin for adjustment at the end of the flange. This condition is

illustrated in the flare time history of figu_e 14 for another X-I_

pilot making his first flight.

The flare illustrated (fig. 14) was initiated at an altitude of

580 feet and an airspeed of 309 KIAS. It was essentially completed

20 seconds before touchdown at an altitude of 40 feet and an airspeed

of 280 KIAS. At this point_ it was possible for the pilot to extend

the flap and gear without giving undue attention to correcting the

induced transient motions. Even after flap a:id gear extension_ the

pilot was able to devote almost i0 seconds to the task of further

reducing rate of sink and touching down. In ;his instance_ touchdown

was accomplished with an airspeed of 174 KIAS an angle of attack

of 7.5 °, and a rate of sink of 5 ft/sec.

A comparison of the time history of figu;_e 14 with time histories

of the first four flights (figs. i0 to 13) sh>ws that the pilot_ by

increasing his speed margin_ had more than d_led the time available

for making a gentle landing. Increasing the _peed margin does not_ in

itself_ guarantee that the pilot will make a i_ood landing. But_ by

increasing the time interval in the presence .)f the ground_ the pilot

materially improves his chances of minimizing the rate of sink at
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touchdown. He affords himself a finite time interval for estimating

his rate of descent, adjusting it as required, and touching down before

speed has decayed to a dangerously low value.

Inspection of figure 14 reveals that large stabilizer control

inputs were applied during the landing_ which suggests a tendency for

the pilot to overcontrol. Similar tendencies were observed in the data

of reference 14 from which it was determined that some pilots,

particularly fighter pilots, derive a more satisfactory "feel" and

response from the controls by applying abrupt, rapid stick motions.

Other landings by pilot C_ a former fighter pilot, exhibited this

tendency_ which indicates that the cause was one of technique rather
than overcontrol.

Effect of dampers.- As mentioned previously, lack of pitch

damping was considered to be a contributing factor in the oscillations

encountered in the first flight. That the lack of roll damping had

little effect was also noted in the initial landings. It is of

interest_ therefore, to consider the results obtained under similar

conditions in later flights_ particularly those flights made without

pitch damping.

A recurrence of inoperative pitch damping took place on

flight 1-2-7 in which the damper apparently failed prior to launch.

Because of the nature of the failure_ however_ the pilot was not aware

of the trouble. Figure 15 presents a time history of the landing which

shows that a preliminary flare was performed by using the center stick

at an altitude of i;860 feet and an airspeed of 279 KIAS while the

airplane was turning onto the final approach several thousand feet to

the side of the runway centerline. A final flare was then initiated at

an altitude slightly less than 500 feet and an airspeed of 270 KIAS.

No large oscillations were encountered during this flare; and touchdown

was accomplished at an airspeed of 189 KINKS, a rate of sink of 5 ft/sec;

and an angle of attack of 7.1 °. Although the pilot realized that the

airplane did not handle as it had in the previous three flights

(because of the damper failure), he had no difficulty in making the

landing.

After a number of maneuvers were performed at safe altitudes with

all dampers intentionally inoperative, in addition to the earlier

landings with pitch- or roll-damper malfunctions; a landing with all

dampers off was demonstrated in flight 2-8-16. In this flight the

entire flare was made with the pilot using the center stick only. As

shown in figure 16_ the flare was initiated at an altitude of 630 feet

and an airspeed of 270 KIAS. Shortly after the initiation of the flap

cycle (t _ 16 sec); a transient motion in roll with a peak roll rate

of 13.5 deg/sec occurred. This was the largest roll transient observed

during any flare, including that of the glide flight. The transient



16

was quickly damped, however, and the remain0er of the landing was
routine. Touchdown conditions were an airsleed of 185 KIAS_ a rate of

sink of 3.5 _t/sec, and an angle of attack cf 6.6 ° . This landing proved

that the X-15 could be landed with all dampers off without encountering

the objectionable oscillations experienced cn the first flight.

Evaluation of side-stick controller.- _nother factor believed to

have contributed to the oscillations experienced on the first flight

was the sensitivity of the side-stick controller used to perform the

flare. With a backlog of experience that imcluded i0 landings in the

X-15_ pilot A again tested the suitability of the side stick for landing

in flight 2-9-18. In this instance, however, the pitch damper was

operating. The time history for this flare is shown in figure 17.

Although no pronounced aircraft oscillations are evident in figure 17,

the horizontal-stabilizer and normal-acceleration curves show some

overcontrol tendencies throughout the flare. The flare was initiated

at an altitude of 464 feet and an airspeed of 282 KIAS. Touchdown was

delayed, however_ until the comparatively s]ow speed of 160 _ was

reached. The angle of attack was 11.2 ° and the rate of sink was

4 ft/sec at touchdown.

One additional landing (flight 2-i0-21) was performed using the

side stick. The pilot again had some difficulty in controlling the

airplane, particularly near the ground; and conceded at this time that

he felt he could perform more satisfactory landings with the less-

sensitive center stick. This concession do_s not necessarily imply

that the side-stick controller is unsatisfactory; however. Previous

tests at the Flight Research Center using a_ F-107A airplane equipped

with a side controller similar to that used in the X-15 showed that

low controller sensitivity for landing may Itot be an essential

requirement. Several of the X-15 pilots flc_w the F-107Aairplane and

performed; among other maneuvers_ complete landings using only the side

stick. After a number of landings were perJ'ormed; each pilot could

land equally well with the side stick and tile center stick. Thus; with

some experience_ good landings can be performed with either means of

control.

Effect of flap angle.- The improper fl_.p actuation in the second

flight_ discussed previously, actually resulted in a comfortable flare

from a piloting standpoint. Thus, a reappr_.isal of available wind-

tunnel data was made which showed that, by c ecreasing the flap travel

from 40 ° to 30°_ a reduction in drag and a c:orresponding increase in

lift-drag ratio could be obtained (see figs 4(c) and 4(d)) without

noticeably affecting the angle of attack fo:" landing. Figure 18 is a

time history of a flare with the 30°-flap extension (flight 2-7-15).

The initial flare was begun about 28 second:; before touchdown from an

altitude of about i, i00 feet and an airspeed of 297 KIAS_ followed by
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a second flare performed shortly after flap actuation. Touchdown

conditions were an airspeed of 193 KIAS, angle of attack of 7.1°_ and

rate of sink of 2.5 ft/sec.

Summary.- Figure 19 presents_ in terms of landing speed_ a summary

of various flare and touchdown parameters_ including touchdown angle of

attack and vertical velocity_ time to perform the flare_ and flare-

initiation altitude and airspeed. Touchdown statistics and limitations

are further summarized in figure 20 and table III. Each factor is

briefly discussed in the following sections_ and the variations among

the different pilots are indicated.

Examination of the data of figure 19 shows that an average X-15

flare would begin at an altitude of about 800 feet and an airspeed of

about 300 KIAS. The time required to perform the flare and touchdown

is usually less than 30 seconds. Average touchdown conditions are of

the order of an airspeed of 185 KIAS_ a rate of sink of 4 ft/sec 3 and

an angle of attack of 7°. All the pilots believed that_ when the

center stick was used_ the X-15 could be controlled adequately even

with all dampers off.

Angle of attack at touchdown: Figure 19 shows that the angle of

attack at touchdown, as expected_ generally increases with decreasing

touchdown speed. As shown_ pilot A_ in particular 3 has landed at

slower speeds than the other pilots; hence_ the touchdown angles of

attack for his flights were higher than average. In general_ the angles

of attack at touchdown have varied from about 4° at high speeds to near

Ii ° at low speeds. Also shown for reference in this figure is the angle

of attack for i g trim flight with a wing loading of 73 ib/sq ft. Since

most of the touchdowns have been made near i g_ the lower trend in angle

of attack shown for the flight data is attributed to ground effects.

Vertical velocity at touchdown: This parameterj with rates

extending to 9.5 ft/sec (fig. 19), seems to be relatively independent

of touchdown speed. The average rate of sink at touchdown of about

4 ft/sec is somewhat higher than that reported in reference 12.

Time to complete flare: The time interval from flare initiation

to touchdown also appears to be independent of touchdown speed; for

this investigation the average time is about 27 seconds.

Airspeed at flare initiation: This parameter generally increases

with increasing touchdown speed_ as might be expected. It is

interesting to note 3 however_ that the flares starting from the highest

speed (V± = 339 KIAS on flight 1-15-28) and the lowest speed

(Vi = 242 KIAS on flight 2-1-3) both terminate at touchdown airspeeds

slightly below the average of approximately 185 KIAS.
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Altitude at flare initiation: A generally diminishing trend with

decreasing airspeed is noted for this altitude in figure 19. There is_

however_ a wide spread in the results arising from differences in flare

abruptness and the point of gear and flap extension.

Touchdown dispersion: In a number of flights; pilots B to G have

attempted to touch down at preselected points on the landing runway.

Table III summarizes the dispersions from the_e preselected points.

Three touchdowns occurred over 2_000 feet fron the intended pointj and

three others extended just beyond i;000 feet; whereas_ in five of the

more recent landings; contact was made in les_ than i;000 feet.

Excluding some of the early attempts; these d_ta verify the conclusion

of reference i that landings of the X-15 should be possible within

±i;000 feet of a designated point.

Gear design envelope: Figure 20 presents the gear design envelope

defined by touchdown angle of attack and vertical velocity. This

envelope actually imposed a rather severe tas]: on the pilot in

executing the flare so that the touchdown limitations would not be
exceeded. The dashed line shows the original design limit (based upon

a design weight of ii_500 ib) applicable to tle first four landings

designated by the solid symbols. It can be s(_en that the first three

landings closely approached the limit; and th_.t the fourth considerably

exceeded the limit. As noted before; major s_ructural damage was

incurred on this landing (flight 2-3-4). Ref(_rence 6 describes in

detail the manner in which the gear was strengthened; thereby raising

the limits to the present levels (based upon a design weight of

14;500 ib) indicated by the solid lines. All subsequent landings

were within the new limits; although two landings made by pilot A were

very close to these limits.

l

Value of In-Flight Simul_tion

Prior to and during the X-15 flight prog_am_ numerous in-flight

landing simulations have been performed using, primarily; F-f04

airplanes. Fixed-base simulations served con_:urrently as a guide for

determining the range of control parameters _ich should be investi-

gated. Because the visual cues and motion st:.muli of flight were

lacking_ however_ the fixed-base simulations _Lid not provide an

adequate sense of realism. For the in-flight simulation the Flight

Research Center and the Air Force Flight Test Center used F-I04

airplanes and North American Aviation used an F-10OA. Both airplanes

approximated the X-15 wing loading.

Performance data from the F-IO4A tests; reported in reference 2;

are shown with X-15 data in figure 21. As can be seen; when

appropriate combinations of extended gearj flaps; and speed brakes are

usedj the F-104A at zero thrust should be abl_ to simulate the X-15 well.
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The ability of the F-I04 to simulate the X-15 is more

convincingly demonstrated in figure 22_ which shows the good correla-

tion between an F-I04 flight pattern and the X-15 predicted landing

pattern previously presented in figure 7. Also included is a similar

pattern for the F-IOOA airplane used by the manufacturer with idle

engine power 3 extended gear_ speed brakej and a drag parachute. Both

of these vehicles enabled the pilots in simulated X-15 landings to

establish geographic check points and key altitudes around the pattern;

thus_ they became familiar with the precise timing required in the

pattern by the low lift-drag ratio. Even the X-15 flare characteristics

were well represented by the F-IO4A, as can be seen in figure 23.

Speeds_ vertical velocities 3 altitudes_ and normal acceleration

correlated well_ which provided the pilot with the proper motion stimuli

and visual cues. The results from the fixed-base analog simulation are

included for comparison.

At present_ prior to each X-15 flight 3 the pilot devotes an entire

F-104 flight to simulated approaches and flares. The pilots all

readily agree on the value of these flight simulations (ref. 15) and

feel that such procedures should be seriously considered for all future

reentry gliders having low lift-drag ratios.

CONCLUDING REMARKS

This analysis of the first 30 landing approach and flare maneuvers

made with the X-15 airplane provides a useful background of flight

experience and a relatively good cross section of landing characteristics

applicable to future low-lift-drag-ratio gliders. Seven X-15 pilots_

after a suitable period of indoctrination_ have now flown the aircraft.

Among the significant results from these early X-I_ flights are the

following items:

Analysis of the flight data indicates that the peak lift-drag

ratio for the X-15 at landing speeds varied between 3.5 and 4.5_

depending on configuration_ and was somewhat higher than predicted.

In this range of lift-drag ratios the pilots were able to establish

a fairly wide range of easily controlled approach patterns and flares

without devoting undue attention to space position, pattern speeds,

or sinking rates.

In spiral-type overhead patterns starting from altitudes as high

as 40_000 feet_ the pilots_ through the use of speed-brake modulation

and maneuvering flight, were able to define a "gate" on the downwind leg

of the pattern having ±8_O00-foot altitude deviations and ±lO_O00-foot

lateral deviations and yet touch down consistently within about

±i_000 feet of a preselected point.
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The flare was found to be the most proble;natical phase of the X-15
landings_ largely because of the relatively severe touchdown angle-of-
attack limitations imposedby the landing-gear design. In the landing
evaluation_ most of the airplane deficiencies and piloting problems
emergedduring the flare maneuversof the first four landings. There-
after_ the task becameeasier.

A typical flare was initiated at a "comfortable" altitude of about
800 feet and an indicated airspeed of approximately 300 knots3 which
allowed a margin of excess speed. Whenthe fl_re was essentially
completedj the flap and gear were extendedj th_s delaying to the last
possible momentthe rapid speed decay associated with the low lift-drag
ratios and allowing the pilot additional time for final adjustments.
Average touchdowns have been accomplished at speeds of about 185 KIAS
with angles of attack of about 7° and rates of sink of about 4 ft/sec.

All the pilots believed that_ when the center stick was used_ the
X-15 could be controlled adequately even with all dampers off.

The extensive fixed-base and flight simu_ations_ particularly
those madewith the F-104 airplanes_ were accurate and valuable aids
in this landing program.

I

r

Flight Research Center_

National Aeronautics and Space Administrstion_

Edwards, Calif._ April 12_ 1961
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TABLE I.- PHYSICAL CHARACTERISTICS OF THE X-15 AIRPLANE

Wing :

Airfoil section ............... NACA 66005 (Modified)

Total area (includes 94.98 sq ft

covered by fuselage), sq ft ............... 200

Span, ft ......................... 22.36

Mean aerodynamic chord, ft ................ 10.27

Root chord, ft ...................... 14.91

Tip chord, ft ...................... 2.98

Taper ratio ....................... 0.20

Aspect ratio ...................... 2.50

Sweep at 25-percent-chord line, deg ............ 25.64

Incidence, deg ...................... 0

Dihedral, deg ....................... 0

Aerodynamic twist, deg .................. 0

Flap -

Type ....................... Plain

Area (each), sq ft ................... 8.30

Span (each), ft ..................... 4.50

Inboard chord, ft .................... 2.61

Outboard chord, ft .................. 1.O8

Deflection, down, deg .............. See table III

Ratio flap chord to wing chord ............. 0.22

Ratio total flap area to wing area ........... 0.08

Ratio flap span to wing semispan ............ 0.40

Trailing-edge angle, deg ............... 5.67

Sweepback angle of hinge line, deg ........... 0

Horizontal tail:

Airfoil section ............... NACA 66005 (Modified)

Total area (includes 63.29 sq ft

covered by fuselage), sq ft ............... 115.3 4

Span, ft ......................... 18.08

Mean aerodynamic chord, ft ................ 7.05

Root chord, ft ...................... 10.22

Tip chord, ft ....................... 2.11

Taper ratio ........................ 0.21

Aspect ratio ....................... 2.83

Sweep at 25-percent-chord line, deg ............ 45

Dihedral, deg ....................... -15

Ratio horizontal-tail area to wing area .......... 0.58

Movable surface area, sq ft ................ 51.77

Deflection -

Longitudinal, up, deg .................. 15

Longitudinal, down, deg ................. 35

Lateral differential (pilot authority), deg ....... ±15

Lateral differential (autopilot authority), deg ..... ±30

Control system. . Irreversible hydraulic boost with artificial feel



24

TABLE I.- PHYSICAL CHARACTERISTICS OF THE X-15 AIRPLANE - Concluded

Upper vertical tail:

Airfoil section .................. i0 ° single wedge

Total area, sq ft ..................... 40.91

Span, ft ......................... 4.58

Mean aerodynamic chord, ft ................ 8.95

Root chord, ft ...................... lO.21

Tip chord, ft ....................... 7.56

Taper ratio ........................ 0.74

Aspect ratio ....................... 0.51

Sweep at 25-percent-chord line, deg ............ 23.41

Ratio vertical-tail area to wing area ........... 0.20

Movable surface area, sq ft ................ 26.45

Deflection, deg ...................... ±7.50

Sweepback of hinge line, deg ............... 0

Control system. . Irreversible hydraulic boost with artificial feel

Lower vertical tail:

Airfoil section .

Total area, sq ft .....................

Span, ft .........................

Mean aerodynamic chord, ft ................

Root chord, ft ......................

Tip chord, ft .......................

Taper ratio ........................

Aspect ratio .......................

Sweep at 25-percent-chord line, deg ............

Ratio vertical-tail area to wing area ...........

Movable surface area, sq ft ................

Deflection, deg ......................

Sweepback of hinge line, deg ...............

Control system.

................ i0 ° _ingle wedge

34.41

3.83
9.17

i0.21

8
o.78
0.43

23.41
0.17

19.95

+7.5o
0

Irreversible hydraulic i_oost with artificial feel

Fuselage:

Length, ft ........................ 50.75

Maximum width, ft ..................... 7.33

Maximum depth, ft .................... 4.67

Maximum depth over canopy, ft ............... 4.97

Side area (total), sq ft ................. 215.66

Fineness ratio ...................... lO.91

Speed brake (typical for each of four):

Area, sq ft ....................... 5.57

Span, ft ......................... 1.67

Chord, ft ....................... 3.33

Deflection, deg ...................... 35
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